Gap junction hemichannels contribute to the generation of diarrhoea during infectious enteric disease.

نویسندگان

  • Julian Andrew Guttman
  • Ann En-Ju Lin
  • Yuling Li
  • John Bechberger
  • Christian C Naus
  • A Wayne Vogl
  • B Brett Finlay
چکیده

OBJECTIVE The attaching and effacing (A/E) pathogens enterohaemorrhagic Escherichia coli, enteropathogenic E coli and Citrobacter rodentium colonise intestinal tracts, attach to enterocytes, collapse infected cell microvilli and alter numerous host cell processes during infection. Enterocyte alterations result in numerous small molecules being released from host cells that likely contribute to diarrhoeal phenotypes observed during these infections. One possible route for small molecules to be released from intestinal cells may be through functional gap junction hemichannels. Here we examine the involvement of these hemichannels during the diarrhoeal disease caused by A/E pathogens in vivo. DESIGN Mice were infected with the diarrhoea-causing murine A/E pathogen C rodentium for 7 days. Connexin43 (Cx43) protein levels and immunolocalization in the colon were initially used to determine alterations during A/E bacterial infections in vivo. Connexin mimetic peptides and connexin permeable tracer molecules were used to gage the presence and function of unpaired connexin hemichannels. The role of Cx43 in diarrhoea generation was assessed by comparing infections of wild-type mice to Cx43 mutant mice and determining the water abundance in the colonic luminal material. RESULTS We demonstrate that Cx43 protein levels are increased in colonocytes during in vivo A/E bacterial infections, resulting in functionally open connexon hemichannels in apical membranes of infected cells. moreover, infected Cx43 +/- mice do not suffer from diarrhoeal disease. CONCLUSIONS This study provides the first evidence that functional connexon hemichannels can occur in the intestine and are a novel molecular mechanism of water release during infectious diarrhoea.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered formation of hemichannels and gap junction channels caused by C-terminal connexin-32 mutations.

Hexamers of connexins (Cxs) form hemichannels that dock tightly in series via their extracellular domains to give rise to gap junction channels. Here we examined the ability of a variety of C-terminal Cx32 mutations, most of which have been identified in X-linked Charcot-Marie-Tooth disease, to form hemichannels and to complete gap junction channels using the Xenopus oocyte system. First, we sh...

متن کامل

Ischemia induces closure of gap junctional channels and opening of hemichannels in heart-derived cells and tissue.

AIM Gap junction intercellular communication (GJIC) and hemichannel permeability may have important roles during an ischemic insult. Our aim was to evaluate the effect of ischemia on gap junction channels and hemichannels. METHODS We used neonatal rat heart myofibroblasts and simulated ischemia with a HEPES buffer with high potassium, low pH, absence of glucose, and oxygen tension was reduced...

متن کامل

Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases

Microglia are macrophage-like resident immune cells that contribute to the maintenance of homeostasis in the central nervous system (CNS). Abnormal activation of microglia can cause damage in the CNS, and accumulation of activated microglia is a characteristic pathological observation in neurologic conditions such as trauma, stroke, inflammation, epilepsy, and neurodegenerative diseases. Activa...

متن کامل

Permeation of calcium through purified connexin 26 hemichannels.

BACKGROUND Indirect evidence suggests that connexin hemichannels are permeable to Ca(2+), but direct demonstration is lacking. RESULTS Calcium moves into liposomes containing purified Cx26 in response to a concentration gradient. CONCLUSION Cx26 hemichannels are permeable to Ca(2+). SIGNIFICANCE Cx26 hemichannels may play a role in Ca(2+) influx into cells under conditions that lead to he...

متن کامل

Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles

Functional interaction between neurons and glia is an exciting field that has expanded tremendously during the past decade. Such partnership has multiple impacts on neuronal activity and survival. Indeed, numerous findings indicate that glial cells interact tightly with neurons in physiological as well as pathological situations. One typical feature of glial cells is their high expression level...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Gut

دوره 59 2  شماره 

صفحات  -

تاریخ انتشار 2010